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Introduction 
 
Lockin thermography in its present form was first developed in the early 1990’s [1].  
Busse [2] was perhaps the first to use this technique in its present form using a set of 
remote lamps as the thermal excitation source.  Busse performed scans of carbon 
reinforced polymers using an infrared camera with a focal plane array.  Busses 
experiment indeed showed that lockin thermography could indeed be used to 
interrogate subsurface features in composite structures.  Since Busse’s initial work a 
considerable amount of research has been conducted into the use of thermographic 
techniques to interrogate composite structures [3-5]. 
 
Something about Z-pinned structures 
 
When a structure is periodically heated dispersive waves are induced near the surface 
of the structure.  These thermal waves while technically not waves can be thought of 
as heavily damped waves. These thermal waves were first investigated by Fourier [6] 
and later by Angstrom [7].  These thermal waves with present day infra-red 
technology can be physically observed. 
 
Consider a semi-infinite planner specimen periodically heated uniformly by a remote 
light source.  The light source possesses an angular frequency of ω (ω=2π f where f is 
the frequency in hertz).  In this situation the problem can be reduce to a one-
dimensional case. 
 
The equation describing the resulting temperature distribution over the plate can be 
represented by 
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Here z represents the thickness of the plate, λt represents the thermal wavelength in 
the plate, t represents the time and µ is the thermal diffusion length. 
 
The thermal diffusion length can be expressed as 
 
 ωαωρµ /2/2 == Ck  (2) 
 
Where k is the thermal conductivity of the plate, C is the specific heat, ρ is the density 
and α is the diffusivity of the plate.  The thermal wavelength is related to the thermal 
diffusion length by πµλ 2=t . 
 
In equation 1 the phase angle φ(z) is directly related to the thickness of the material. 
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In reference to NDT applications high modulation frequencies can be used to 
interrogate only a small layer near the surface of the structure.  Low modulation 
frequencies can be used to interrogate structures much deeper but require much longer 
acquisition times. 
 
Lockin thermography utilizes a sinusoidal thermal stimulus.  This stimulus can be 
introduced internally via the thermo-elastic effect or external stimulus such as a set of 
lamps.  The use of lamps usually refers to optical lockin thermography.  Lockin 
thermography can provide both amplitude and phase images.  The phase in this 
instance refers to the measured phase difference between the lockin signal from the 
lamps and the thermal signal from the infrared camera.  The phase image is 
particularly useful as it generally is invariant of non-uniform heating.  This technique 
usually provides better depth information than does the pulse phase technique.  This 
increased depth penetration results from only interrogating with one frequency at a 
time, unlike the pulse phase technique which excites multiple frequencies 
simultaneously.  However, multiple measurements are required to scan the frequency 
spectrum to achieve the greatest phase contrasts. 
 
A thermal impulse can induce a thermal wave into a structure.  The term wave is not 
strictly correct but the heat impulse can be considered to be a heavily damped wave.  
The wave introduced into the structure quickly attenuates, thus measurements of 
phase can become difficult as the signal becomes weak after one to two periods.  
Measurement of the depth can be made using the magnitude of the wave form or the 
period.  Typically the depth range is that of the diffusion length µ which is given by: 
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Where k is the thermal conductivity, ρ is the density, c is the specific heat and ω is the 
angular frequency. 
 



In the case of phase measurements a depth range of up to two times the diffusion 
length can be achieved [8, 9]. In some of Busse’s [10] earlier work he indicates a 
maximum penetration depth of 1.8µ. 
 
For general image processing purposes the following equations maybe used to extract 
the phase, magnitude and average thermal images. 
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Here S1, S2, S3 and S4 represent magnitudes at four equi-distant time intervals 
measured with reference to a sinusoidal lockin signal with zero phase [8]. 
 
Equations 5-7 provide a convenient method of evaluating the phase and amplitude 
images.  However, in the present analysis another approach based on the Fourier 
transform (equation 8) has been used.  The advantage of this approach means that 
more data can be analysed to minimise the influence of background noise.   
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Methodology 
 
For the present investigation a JADE mid wavelength infrared (MWIR) radiometric 
system was used that includes a C9906 Detector with 320*240 elements (30µm 
pitch). The camera uses a HgxCd1-xTe (MCT) detector array with a spectral response 
within 3µm to 5µm. The detector array uses a Stirling cooler and is thermal sensitivity 
down to < 25mK. This camera possesses further functionality with adjustable frame 
rates in the range of 1Hz to 200Hz for a 320*240 image and up to 10 KHz for a 320*2 
image.   
 
The camera was set up to perform a single sided scan of the test subject as shown in 
Figure 1. Four 750 Watt lamps were used and their output controlled by a Hameg 
HM8131-2 function generator.  The lamps were angled to provide even heating over 
the surface of the sample.  The samples themselves were coated with RS 496-782 
Matt black paint with an emissivity of 98%. 
 
 



 
 
Figure 1 a) Schematic representation of the experimental setup b) Image of the actual 
experimental arrangement. 
 
Three modulation frequencies were independently applied to each of the specimens 
investigated 0.5Hz, 0.05Hz and 0.005Hz.  The voltage was controlled such that the 
maximum temperature of the specimens did not exceed 60 degrees Celsius.  Each 
lamp was approximately outputting between 20-40% of its maximum potential output.  
The lamps themselves were positioned approximately 1 meter from the specimens 
surface.  The infrared camera was positioned behind the lamps at a distance of 
approximately 1meter. 
 
Three small 135 degree thin angled specimens, 5 135 degree wide angled specimens 
and 4 large flat specimens were tested.  For each of these specimens three modulation 
frequencies as mention earlier were used to interrogate the front surface and then 
again on the reverse side of the specimens.  Amplitude and phase images were 
obtained for all the samples tested. 
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Results 
 
Sample: H166-A2 
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Sample: H166-A1 
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Sample: H166-A6-A7-A8 
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Sample: H166-A6-A7-A8 Rear 
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Sample: H166-B1-B2-B3-B4 
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Sample: H166-B1-B2-B3-B4 Rear 
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Periods 5 
 
A clear picture 
but z pins 
cannot be seen 
well 
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Sample: H166-A1-A2-A3-A4-A5 
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Frequency 0.5Hz 
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Phase 
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Periods 5 
 
Sub surface damage 
can be clearly seen 
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Sample: H166-A1-A2-A3 

Phase 
Frequency 0.5Hz 
Periods 20 
 
The distribution of the 
z-pins is clear, as is the 
surface and subsurface 
damage. 
 
Non visible pins can be 
seen. 
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The distribution of the 
z-pins is clear, as is the 
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Sample: H166-A1-A2-A3 
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The distribution of the 
z-pins is clear, as is the 
surface and subsurface 
damage. 
 
Non visible pins can be 
seen. 
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Sample: H166-A1-A2-A3 
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Frequency 0.5Hz 
Periods 20 
 
The distribution of 
the z-pins is 
relatively clear, as 
is the surface and 
subsurface damage 
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Sample: H166-A4 
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Sample: H166-A5 

 
Phase 
Frequency 0.5Hz 
Periods 20 



Phase 
Frequency 0.05Hz 
Periods 5 
 
 
Note the presence of the 
embedded optical fibre. 
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*Note that the amplitude is measured in an arbitrary unit and not MPa as specified in 
the images 



 
Discussion 
 
After an exhaustive investigation it would appear that only limited detection of z pins 
in the supplied composite specimens was possible.  
 
Samples H166-A2 and H166-A3 revealed that detection of the pins was possible only 
if they were located just below the surface.  Examining the images with respect to 
H166-A2 and H166-A3 one can see areas where the z pins are revealed where they 
were not visible in the photograph.   
 
Thermographic inspection of other samples has not always revealed the presence of z 
pins.  These observations appear to be consistent with the widely held belief that the 
radius of the smallest detectable defect should be at least one to two times larger than 
its depth under the surface [11]. This empirical rule of thumb was developed in 
relation to observations in pulse or flash thermography for homogeneous isotropic 
materials.  In the present analysis it would appear that the dispersive nature of the 
composite matrix inhibits the ability to image small structural features.  The diameter 
of the z pins are relatively small and thus z pins any further than the thickness of a ply 
below the surface become undetectable with this technique. 
 
Examining results of specimens H166-A6-A7-A8 and H166-B1-B2-B3-B4 where 
images were taken from the flat sides, it is possible to make some observations.  For 
lower frequencies of the order of 0.005Hz the thickness variations of the back surface 
were visible.  These measurements indicate that the present thermographic technique 
is able to resolve a 2mm variation in a 12mm thick composite specimen. 
 
 
Conclusion 
 
It would appear that lockin thermography could (just) assess the presence and 
distribution of the z pins in the present composite structures.  It was also possible to 
detect thickness variations specimens that were approximately 12 mm thick. 
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Infrared Thermography (IRT) is a thermal 
Non-Destructive Inspection Technique.
It is used primarily in thin structures.
Hence its applicability in inspecting CFRP.
It can be used to detect typical composite 
sub-surface defect types and 
characteristics.
Advantage of broad area scanning for 
defects, delaminations and material 
disbonding.
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1. Excitation 2. Response

Computer: triggering, 
data acquisition, 

visualisation

Infra-red camera

Flash lamp
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Direction of arrows represent passage of 
thermal energy.
Thermal impedance alters surface 
temperature contrast.
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IRT provides a cost-effective flexible NDI 
scanning technique.
Extensive experimental and 2D numerical work 
completed on flat panel cases.
Response characteristics and trends obtained for 
these cases.
Adequate 3-dimensional finite element analysis 
has not been performed.
Numerical relationships are limited to 2-D normal 
delamination/disbond configurations.
The investigation of 3D thermal mechanisms is 
limited due to lack of 3D numerical work.
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Project concerns the development of a 
numerical process that can predict defect 
detectability through FEA.
Important given the increasing use of 
complex structures in aerospace 
components.
The need to establish FE relationships is 
required to predict damage parameters.
There exist many types of thermography. 
This project is focused on only one; flash 
thermography.
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Finite Element solution behaves as it should but 
the thermal response must be calibrated.

Heat capacity and conductivity are the thermal 
properties that can be altered.

Coupled they are considered thermal diffusivity.

So by obtaining correct diffusivity a calibrated 
model could be assumed and prediction 
capabilities implemented in models.
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Inclusion of lateral heat flow

No through thickness heat 
flow.

No ‘around thickness’ heat 
flow.

How much do these factors 
affect a delamination model?
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Accurate representation of the lateral 
component is possible with the use of FE.
This component cannot be ignored if prediction 
schemes are derived.
The FBH assumption for delaminations is 
misguided.
2 point identification using inflection and 
maximum point will reduce experimental error.
Studies into the nature of delaminations from a 
thermal perspective is required.
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